Variables & Data Types
7 snippetsVariable
name <- "John"Numeric
age <- 25Vector
nums <- c(1, 2, 3, 4, 5)List
person <- list(name = "John", age = 30)Matrix
mat <- matrix(1:9, nrow = 3, ncol = 3)Data Frame
df <- data.frame(name = c("A", "B"), age = c(25, 30))Factor
status <- factor(c("low", "high", "medium"))Control Flow
5 snippetsIf/Else
if (x > 0) {
print("positive")
} else if (x < 0) {
print("negative")
} else {
print("zero")
}For Loop
for (i in 1:5) {
print(i)
}While Loop
while (count < 10) {
count <- count + 1
}Apply
sapply(1:5, function(x) x^2)Ifelse
result <- ifelse(x > 0, "positive", "non-positive")Functions
4 snippetsFunction
greet <- function(name) {
paste("Hello,", name, "!")
}Default Args
greet <- function(name = "World") {
paste("Hello,", name, "!")
}Return
add <- function(a, b) {
return(a + b)
}Anonymous
function(x) x^2Tired of looking up syntax?
DocuWriter.ai generates documentation and explains code using AI.
Vector Operations
6 snippetsCreate
v <- c(1, 2, 3, 4, 5)Sequence
seq(1, 10, by = 2) # 1, 3, 5, 7, 9Repeat
rep(1, 5) # 1, 1, 1, 1, 1Index
v[1] # First element
v[2:4] # Elements 2 to 4Filter
v[v > 2] # Elements greater than 2Operations
sum(v)
mean(v)
max(v)
length(v)Data Frames
6 snippetsCreate
df <- data.frame(
name = c("Alice", "Bob"),
age = c(25, 30)
)Access Column
df$name
df[["name"]]
df[, "name"]Access Row
df[1, ] # First rowFilter
df[df$age > 25, ]Add Column
df$city <- c("NYC", "LA")Merge
merge(df1, df2, by = "id")Packages
6 snippetsInstall
install.packages("dplyr")Load
library(dplyr)dplyr Filter
df %>% filter(age > 25)dplyr Select
df %>% select(name, age)dplyr Mutate
df %>% mutate(age_plus = age + 1)dplyr Group
df %>% group_by(city) %>% summarise(avg = mean(age))